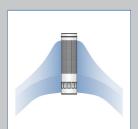
Impulsdurchlässe Serie ISH


Für Industriebereiche ohne luftverunreinigende Prozesse

Impulsdurchlässe mit horizontaler Luftführung im Kühlbetrieb

- Nenngrößen 250, 355, 450, 560 mm
- Volumenstrombereich 205 1585 l/s oder 738 5706 m³/h
- Gehäuse aus verzinktem Stahlblech
- Für konstante und variable Volumenströme
- Freihängender Einbau, Wand- oder Säulenbefestigung
- Hohe Wurfweite durch großen Ausströmimpuls
- Manuell und motorisiert verstellbare Ausströmrichtung
- Kettenzug zur manuellen Verstellung der Ausströmrichtung

Optionale Ausstattung und Zubehör

- Sichtseite des Durchlasses in Farben nach RAL Classic
- Elektrische und thermische Stellantriebe zur Verstellung der Ausströmrichtung
- Bowdenzug zur manuellen Verstellung der Ausströmrichtung
- Wandhalterung

Kühlbetrieb, horizontale Luftführung

Heizbetrieb, vertikale Luftführung

Anordnung über den Arbeitsplätzen

ISH

Allgemeine Informationen

Serie		Seite
ISH	Allgemeine Informationen	ISH - 2
	Funktion	ISH - 3
	Technische Daten	ISH - 5
	Schnellauslegung	ISH - 6
	Ausschreibungstext	ISH - 7
	Bestellschlüssel	ISH - 8
	Zubehör	ISH - 9
	Abmessungen und Gewichte	ISH - 10
	Einbaudetails	ISH - 12
	Grundlagen und Definitionen	ISH - 15

Anwendung

Anwendung

- Impulsdurchlässe der Serie ISH als Zuluftdurchlass vorzugsweise für Industriebereiche ohne luftverunreinigende Arbeitsprozesse
- Horizontale Luftführung im Kühlbetrieb, vertikale Luftführung im Heizbetrieb
- Belüftung größerer Aufenthaltsbereiche durch hohen Ausströmimpuls
- Für konstante und variable Volumenströme
- Für Zulufttemperaturdifferenzen von –8 bis +12 K
- Freihängender Einbau sowie an Säulen oder Wänden in 3,5 – 10 m Höhe
- Anordnung vorzugsweise oberhalb des

Aufenthaltsbereiches

 Optimal zur Ansteuerung durch Temperatur-Differenz-Regelung der Serie TDC

Besondere Merkmale

- Große Wurfweite des Zuluftstrahls durch hohen Ausströmimpuls
- Horizontale oder vertikale Luftströmung
- Freihängender Einbau oberhalb der Aufenthaltsbereiche möglich
- Verstellung der Luftführung manuell, mit elektrischem oder thermischem Stellantrieb

Nenngrößen

- 250, 355, 450, 560 mm

Beschreibung

Bauteile und Eigenschaften

- Gehäuse mit Lochblechdurchlass und rechteckigen Luftdurchlassöffnungen
- Luftleitteller zur Verstellung der Luftführung
- Anschlussstutzen für vertikalen Luftleitungsanschluss

Anbauteile

- Handverstellung mit Kettenzug ca. 2,0 m
- B: Handverstellung mit Bowdenzug ca. 2,8 m
- E*: Elektrischer Stellantrieb
- T: Thermischer Stellantrieb

Zubehör

- W00: Wandhalterung
- K00: Kettenhalterung
- WK0: Wand- und Kettenhalterung

Konstruktionsmerkmale

 Anschlussstutzen passend für runde Luftleitungen nach EN 1506 oder EN 13180

Materialien und Oberflächen

- Gehäuse mit Bodenplatte, Traverse und

- Luftleitteller aus verzinktem Stahlblech
- Kettenzug aus verzinktem Stahl
- Umlenkrollen aus Kunststoff, nach UL 94, V-0, flammwidrig
- B: Handhebel aus verzinktem Stahl, Bowdenzug aus verzinktem Stahl, PEummantelt
- P0: Pulverbeschichtet, RAL 9010, reinweiß
- P1: Pulverbeschichtet, Farbton nach RAL Classic

Normen und Richtlinien

 Schallleistungspegel des Strömungsgeräusches gemessen nach EN ISO 5135

Instandhaltung

- Wartungsfrei, da aufgrund der Konstruktion und der verwendeten Materialien keine Abnutzung erfolgt
- Überprüfung und Reinigung nach VDI 6022

PD-ISH-2

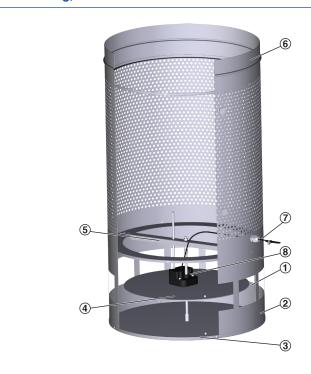
Funktionsbeschreibung

Impulsdurchlässe lassen die Zuluft lufttechnischer Anlagen mit hohem Austrittsimpuls und infolgedessen mit großen Wurfweiten in den Raum strömen. Dadurch ist die Belüftung großer Flächen möglich.

Impulsdurchlässe der Serie ISH sind vorzugsweise für Industriebereiche ohne luftverunreinigende Prozesse bestimmt. Sie werden oberhalb des Aufenthaltsbereichs angeordnet. Durch einen verstellbaren Luftleitteller wird die Strömungsrichtung an den Heiz- und Kühlbetrieb angepasst. Die Zulufttemperaturdifferenz kann –8 bis +12 K betragen.

Kühlbetrieb

Im Kühlbetrieb strömt die Zuluft horizontal in den Raum.

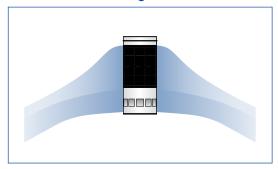

Heizbetrieb

Der Heizbetrieb erfolgt mit vertikaler Luftführung.

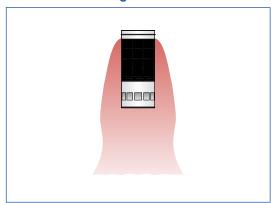
Die Verstellung des Luftleittellers kann manuell oder durch einen elektrischen oder thermischen Stellantrieb erfolgen.

Die Abluft muss im oberen Raumbereich, oberhalb des Aufenthaltsbereiches, abgeführt werden.

Schematische Darstellung, ISH mit elektrischem Stellantrieb



- 1 Luftdurchlassöffnung
- ② Gehäuse
- 3 Bodenplatte
- (4) Luftleitteller
- (5) Traverse
- 6 Luftanschlussstutzen


Optional

- (7) Leitungsdurchführung
- 8 Elektrischer Stellantrieb

Horizontale Luftführung

Vertikale Luftführung

Nenngrößen	250, 355, 450, 560 mm
Minimaler Volumenstrom	205 – 785 l/s oder 738 – 2826 m³/h
Maximaler Volumenstrom, bei $L_{WA} \cong 55 \text{ dB}(A)$	400 – 1585 l/s oder 1440 – 5706 m³/h
Zulufttemperaturdifferenz	−8 bis +12 K

Die Schnellauslegung gibt einen guten Überblick über die möglichen Volumenströme und die korrespondierenden Schallleistungspegel und Druckdifferenzen.
Die maximalen Volumenströme gelten für einen

Schallleistungspegel von ca. 55 dB (A).

ISH Zuluft, horizontale Strömung, Schallleistungspegel und Gesamtdruckdifferenz

Nonnarößo	Ý		Δp_{t}	L _{WA}
Nenngröße	l/s	m³/h	Pa	dB(A)
250	205	738	12	34
	270	972	21	43
	340	1224	33	50
	400	1440	46	55
355	335	1206	11	39
	435	1566	18	47
	535	1926	27	54
	565	2034	30	55
450	470	1692	9	30
	625	2250	15	39
	780	2808	24	47
	950	3420	35	55
560	785	2826	14	30
	1050	3780	24	40
	1310	4716	38	48
	1585	5706	55	55

ISH Zuluft, vertikale Strömung, Schallleistungspegel und Gesamtdruckdifferenz

Nenngröße	V		Δp _t	L _{wa}
Neilligrobe	I/s	m³/h	Pa	dB(A)
050	205	738	12	39
	255	918	20	46
250	300	1080	27	51
	350	1260	37	55
355	315	1134	10	40
	370	1332	14	45
	435	1566	19	50
	515	1854	27	55
450	430	1548	9	36
	530	1908	13	43
	630	2268	19	49
	730	2628	25	55
560	600	2160	9	34
	795	2862	16	43
	985	3546	24	50
	1180	4248	35	55

Dieser Ausschreibungstext beschreibt die generellen Eigenschaften des Produkts. Texte für Varianten generiert unser Auslegungsprogramm Easy Product Finder.

Impulsdurchlässe mit rundem Gehäuse für Industriebereiche ohne luftverunreinigende Prozesse. Mit verstellbarem Luftverteilteller für horizontale bis vertikale Luftführung. Horizontale Luftführung mit hoher Wurfweite. Zum freihängenden Einbau und für Wand- und Säulenbefestigung.

Einbaufertige Komponente, bestehend aus dem Gehäuse mit Luftdurchlassöffnungen, Luftverteilteller und vertikal angeordnetem Anschlussstutzen.

Anschlussstutzen, passend für Luftleitungen nach EN 1506 oder EN 13180.

Schallleistungspegel des Strömungsgeräusches gemessen nach EN ISO 5135.

Besondere Merkmale

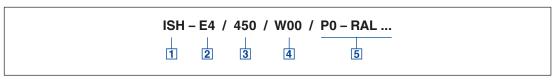
- Große Wurfweite des Zuluftstrahls durch hohen Ausströmimpuls
- Horizontale oder vertikale Luftströmung
- Freihängender Einbau oberhalb der Aufenthaltsbereiche möglich
- Verstellung der Luftführung manuell, mit elektrischem oder thermischem Stellantrieb

Materialien und Oberflächen

- Gehäuse mit Bodenplatte, Traverse und

- Luftleitteller aus verzinktem Stahlblech
- Kettenzug aus verzinktem Stahl
- Umlenkrollen aus Kunststoff, nach UL 94, V-0, flammwidrig
- B: Handhebel aus verzinktem Stahl, Bowdenzug aus verzinktem Stahl, PEummantelt
- P0: Pulverbeschichtet, RAL 9010, reinweiß
- P1: Pulverbeschichtet, Farbton nach RAL Classic

Technische Daten


- Nenngrößen: 250, 355, 450, 560 mm
- Minimaler Volumenstrom: 205 785 l/s oder 738 – 2826 m³/h
- Maximaler Volumenstrom, bei L_{WA} ≅ 55 dB(A): 400 1585 l/s oder 1440 5706 m³/h
- Zulufttemperaturdifferenz: –8 bis +12 K

Auslegungsdaten

[dB(A)]

_	V	
	[m ³ /h]	
_	Δp,	
	[Pa]	
St	römungsgeräusch	
_	L	

ISH

1 Serie

ISH Impulsdurchlass

2 Stellantrieb

Keine Eintragung: Handverstellung mit

Kettenzug

B Handverstellung mit Bowdenzug

E4 230 V AC, 3-Punkt **E5** 24 V AC/DC, 3-Punkt

E6 24 V AC/DC, stetig 0 – 10 V DC

T Thermischer Stellantrieb

3 Nenngröße [mm]

250

355

450

560

4 Befestigung

Keine Eintragung: Ohne

W00 Mit Wandhalterung

K00 Mit Kettenhalterung (Nur bei Verstellung

mit Kettenzug)

WK0 Mit Wand- und Kettenhalterung (Nur bei

Verstellung mit Kettenzug)

5 Oberfläche Sichtseite

Keine Eintragung: Verzinkt

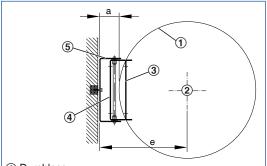
P0 Pulverbeschichtet, RAL 9010, reinweiß

P1 Pulverbeschichtet, RAL Classic Farbton

angeben

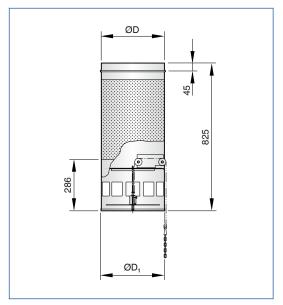
Glanzgrad RAL 9010 50 %

RAL 9006 30 %

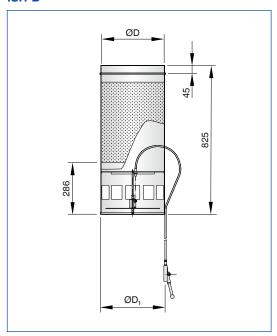

Alle anderen RAL-Farben 70 %

Bestellbeispiel: ISH-E5/450/P1-RAL 9016

Stellantrieb24 V AC/DC, 3-PunktNenngröße450 mmBefestigungOhneOberfläche SichtseiteRAL 9016, verkehrsweiß, Glanzgrad 70 %

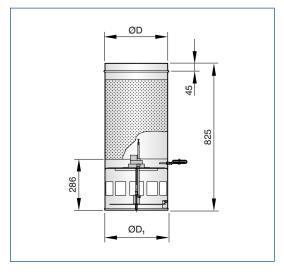

Zubehör Wandhalterung

- ① Durchlass

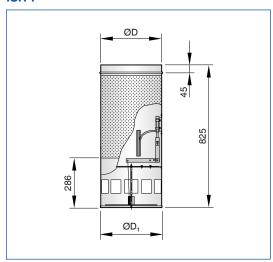

- Durchlassmitte
 Wandhalter Innenteil
 Wandhalter Außenteil
 Wandkonsole

ISH

Handverstellung mit Kettenzug


ISH-B

Handverstellung mit Bowdenzug


Abmessungen und Gewichte

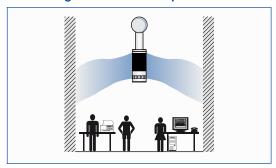
ISH-E*

Elektrischer Stellantrieb

ISH-T

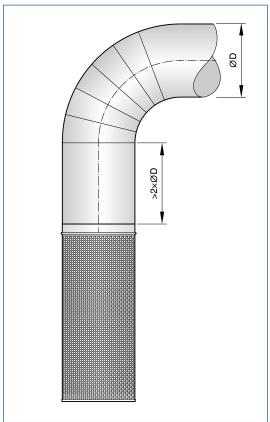
Thermischer Stellantrieb

ISH

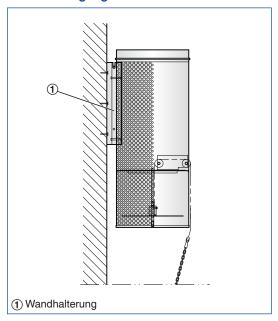

Nenngröße	ØD ₁	ØD	m
	mm	mm	kg
250	252	248	5,0
355	357	353	7,4
450	452	448	10,1
560	562	558	13,1

Einbau und Inbetriebnahme

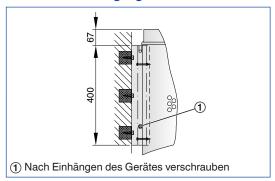
- Einbau vorzugsweise in Höhen von 3,5 10 m
- Freihängender Einbau
- Luftleitungsanschluss vertikal
- Befestigung durch Verschrauben des Anschlussstutzens mit der Luftleitung, bei kundenseitiger sicherer Abhängung
- Befestigung an Wänden und Säulen mit Wandhalterung (optional)
- Gegebenenfalls Kettenhalterung und Handhebel des Bowdenzuges an der Wand oder Säule befestigen


Die Darstellungen sind schematisch und dienen zum besseren Verständnis der Einbaudetails

Anordnung über den Arbeitsplätzen



- Für Industriebereiche ohne luftverunreinigende Arbeitsprozesse
- Anordnung vorzugsweise oberhalb des Aufenthaltsbereiches


Freihängende Anordnung

Wandbefestigung

Detail Wandbefestigung

Grundlagen und Definitionen

Hauptabmessungen

B₁ [mm]

Breite des Frontdurchlasses

B_4 [mm]

Breite eines rechteckigen Anschlussstutzens

ØD [mm

Außendurchmesser des Anschlussstutzens

ØD₁ [mm]

Gehäusedurchmesser

H₁ [mm]

Höhe des Frontdurchlasses

T₁ [mm]

Gehäusetiefe

T_4 [mm]

Tiefe eines rechteckigen Anschlussstutzens

m [kg]

Gewicht (Masse)

Definitionen

$L_{WA}[dB(A)]$

Schallleistungspegel des Strömungsgeräusches, A-bewertet

\dot{V} [m³/h] und [l/s]

Volumenstrom

v. [m/s]

Theoretische Luftgeschwindigkeit bezogen auf die Durchlassfläche im Abstand 0 m vom Durchlass

L_{nz} [m]

Nahbereich des Quellluftdurchlasses (Nahzone), innerhalb der die Komfortkriterien nicht garantiert sind

Ungeachtet der Luftgeschwindigkeit beträgt die

Nahzone mindestens 0,5 m

Im Abstand $L_{\rm nz}$ beträgt die Luftgeschwindigkeit maximal 0,2 m/s, gemessen 0,1 m über dem Boden

$\Delta t_z [K]$

Zulufttemperaturdifferenz (Zulufttemperatur minus Raumtemperatur)

Δp_t [Pa]

Gesamtdruckdifferenz

A_{eff} [m²]

Effektive Luftausströmfläche

Alle Schallleistungspegel basieren auf 1 pW.